A Drop in the Bucket

Objectives

Students will:

- Students will understand the importance of water to Oklahoma and thus to use the water carefully

Background \& Procedures

- Fill a one gallon container so that it is nearly full. Tell your students that the water represents the earth's total water supply.
- Pour one ounce ($1 / 8$ cup) of water from the gallon container into the measuring cup. The water in the measuring cup represents all the earth's land water. Land water, for the purpose of this activity, is defined as the water found on and under the earth's land surface that is potentially available for human use (0.65%). This water may or may not be drinkable; for example, part of the land water is found in saline lakes. These lakes contain such high concentrations of salts that the water is not potable. The water remaining in the gallon jug represents the water stored in the oceans, seas and polar icecaps (99.35%).
- Using the pipette, remove a pipette full of water from the land water. The water in the pipette represents all good quality water found in the world's freshwater lakes, rivers and ground water. Put a drop of red food coloring into the measuring cup to show that the remaining land water is not drinkable without treatment.
- Now, release one drop from the pipette into a can or small metal bucket. Make sure your students are very quiet, so that they can hear the sound of the drop hitting the bottom of the can. Refer to the "Drop in the Bucket" as Oklahoma's share of the world's water. This one drop is precious and must be managed carefully and wisely.

P.A.S.S. 4th Grade

Science

- Process 1.1,2, 3.1,3, 4.4

Math

- Process 1.2, 4.4

5th Grade
Science

- Life 2.2

Math

- Process 1.2, 4.4
- Content 2.1, 3.2b

4th Grade
Science

- Process 1.2, 3.1,5, 4.5
- Life 4.2

Math

- Process 1.1,3, 4.1
- Content 2.3, 4.3

Printed with permission from Teaching Aquifer Protection, Clemson University Cooperative Extension, 103 Barre Hall, Clemson, SC.

A Drop in the Bucket

The World's Water Supply

Location	Water Volume (cubic miles*)	Percentage Total Water
Surface Water		
Freshwater lakes	30,000	. 009
Salt lakes and inland seas	25,000	. 008
Rivers and streams	300	. 0001
Total for subsurface water (Rounded to nearest thousandths)	55,300	. 017
Subsurface Water		
Soil moisture	16,000	. 005
Groundwater within depth of $1 / 2$ mile	1,000,000	. 31
Deep-lying groundwater	1,000,000	. 31
Total for subsurface water	2,016,000	. 625
Other Water Locations		
Icecaps and glaciers	7,000,000	2.15
Atmosphere	3,100	. 001
Oceans	317,000,000	97.2
Total for other water locations	324,003,100	99.351
Total (rounded)	326,000,000	100.00
* A cubic mile of water equals 1.1 trillion gallons		
Adapted from Water of the World, Raymond Nace, U.S. Department of the Interior/ Geological Survey, Publication 1984-421-618/107.		

Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, Title IX of the Education Amendments of 1972, Americans with Disabilities Act of 1990, and other federal laws and regulations, does not discriminate on the basis of race, color, national origin, sex, age, religion, disability, origin, sex, age, religion, disability,
or status as a veteran in any of its policies, practices or procedures. This includes but is not limited to admissions, employment, financial aid, and educational service.

Issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Robert Whitson, Vice President, Dean and Director of Cooperative Extension Service, Oklahoma State University, Stillwater, Oklahoma. This publica tion is issued by Oklahoma State University as authorized by the Dean of the Division if Agricultural Sciences and Natural Resources and has been prepared for both internal and external distributions through print and electronic media.

